

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name				
Environmentally friendly technologies				
Course				
Field of study		Year/Semester		
Chemical and Process Engineering		1/2		
Area of study (specialization)		Profile of study		
Chemical Engineering		general academic		
Level of study		Course offered in		
Second-cycle studies		polish		
Form of study		Requirements		
full-time		compulsory		
Number of hours				
Lecture	Laboratory classes	s Other (e.g. online)		
30	0	0		
Tutorials	Projects/seminars	5		
0	0			
Number of credit points				
2				
Lecturers				
Responsible for the course/lecturer:		Responsible for the course/lecturer:		
D. Eng. Katarzyna Dopierała		D. Sc. Filip Ciesielczyk		
e-mail: Katarzyna.Dopierała@put.poznan.pl		e-mail: Filip.Ciesielczyk@put.poznan.pl		
telephone 61 665-37-72		telephone 61 665-36-26		
Faculty of Chemical Technology		Faculty of Chemical Technology		
Institiute of Chemical Technology and Engineering		Institiute of Chemical Technology and Engineering		
Berdychowo 4, PL-60965 Poznan		Berdychowo 4, PL-60965 Poznan		

Prerequisites

In-depth knowledge of physical, general, organic and inorganic chemistry. In-depth knowledge of inorganic chemical technology and the apparatus of the chemical industry (program basis of the III year of full-time first cycle studies). The ability to solve elementary problems in inorganic chemical technology based on knowledge, the ability to obtain information from the indicated sources in Polish and a foreign language. Understanding the need for further education, understanding the need to expand their competences, readiness to cooperate within a team.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course objective

Acquiring basic knowledge in the field of waste management generated within inorganic chemical technology. Understanding the methods of obtaining inorganic products and identifying waste streams generated during their acquisition. Indication of the possibility of using post-production waste in inorganic technology processes. Understanding the methods of reducing the harmful impact of the implementation of technological processes and obtaining energy on the environment. Acquisition of basic information related to waste management. A proposal for the use of environmentally friendly technologies in the field of biofuel production, the use of renewable raw materials, as well as new ways of conducting chemical syntheses based on the principles of green chemistry.

Course-related learning outcomes

Knowledge

K_W03 - has expanded and in-depth knowledge in chemistry and other related areas of science, allowing to formulate and solve complex tasks related to inorganic chemical technology

K_W04 - has knowledge in the field of complex chemical processes, including the appropriate selection of materials, raw materials, apparatus and equipment for carrying out chemical processes and characterizing the products obtained

K_W05 - has knowledge of the phenomena occurring on the surface of catalysts (sorbent) and knows the basics of using catalysts in industrial processes

K_W07 - has knowledge of the latest chemical and material technologies, including technologies of advanced materials and nanomaterials, knows current trends in the development of chemical industrial processes

K_W09 - has knowledge of environmental protection problems related to the implementation of industrial chemical processes

K_W12 - has a well-established and expanded knowledge of the selected specialty

Skills

K_U01 - has the ability to obtain and critically evaluate information from literature, databases and other sources, and formulate opinions and reports on this basis

K_U05 - can independently determine the directions of further education and implementation of selfeducation

K_U12 - is able to properly use natural resources in industry, guided by the principles of environmental protection and sustainable development

K_U13 - can critically analyze industrial processes and introduce modifications and improvements in this area, using the acquired knowledge, including knowledge about the latest achievements of science and technology

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

K_U14 - has the ability to assess the technological suitability of raw materials and the selection of the technological process in relation to the quality requirements of the product

Social competences

K_K01 - understands the need for lifelong learning; can inspire and organize the learning process of others; is aware of the importance and non-technical aspects and effects of engineering activities, including its impact on the environment, and the associated responsibility for the decisions taken

K_K02 - is aware of the importance and understands the non-technical aspects and effects of engineering activities, including its impact on the environment and the associated responsibility for decisions

K_K03 - is able to interact and work in a group, taking on various roles in it

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Lecture - exam, criterion: 3 - 50.1%-70.0%; 4 - 70.1%-90.0% and 5 from 90.1%

Programme content

- 1. Sustainable development.
- 2. Green chemistry, green technology, green engineering
- 3. New methods of handling chemical reactions
- 4. Supercritical fluids
- 5. Renewable feedstocks
- 6. Biopolymers
- 7. Biofuels and sustainable energy production
- 8. (Bio)conversion of waste glycerol
- 9. Green surfactants
- 10. Methods for corrosion protection

11. Characteristics of generated inorganic and organic pollutant streams within inorganic chemical technology

12. Overview of methods for purifying waste aqueous solutions

13. Characteristics and methods of waste management generated during the acquisition of energy from fossil fuels (fly ash, saline mine water)

Teaching methods

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Lecture - multimedia presentation

Bibliography

Basic

1. Skrypt pod red. K. Prochaska i M. Wiśniewskiego, Technologie przyjazne środowisku, Wydawnictwo PP, Poznań 2012

2. B. Burczyk, Zielona chemia. Zarys. Wyd. II, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2014

3. J.A. Moulijn, M. Makkee, A. van Diepen: Chemical Process Technology, Wiley-Blackwell, Chichester 2013.

4. M.B. Hocking, Handbook of chemical technology and pollution control, Elsevier, Amsterdam 2005.

Additional

1. J. Jabłoński (red.), Technologie zero emisji, Wyd. Politechniki Poznańskiej, Poznań 2011

2. E. Klimiuk, T. Pokój, M. Pawłowska, Biopaliwa. Technologie dla zrównoważonego rozwoju. WNT, Warszawa 2012

3. W. Lewandowski, M. Ryms Biopaliwa. Proeklogiczne odnawialne źródła energii. WNT, Warszawa 2013

4. A. Marteel-Parrish, M.A. Abraham, Green chemistry and Engineering, Wiley- AIChE, 2014

5. C.H. Bartholomew and R.J. Farrauto, Fundamentals of industrial catalytic processes, Wiley, Hoboken, New Jersey 2006.

6. G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, Handbook of heterogeneous catalysis, WILEY-VCH Weinheim 2008.

7. M. Taniewski: Technologia chemiczna - surowce, Wydawnictwo Politechniki Śląskiej, Gliwice 1997.

Breakdown of average student's workload

	Hours	ECTS
Total workload	55	2,0
Classes requiring direct contact with the teacher	40	2,0
Student's own work (literature studies, preparation for	15	0,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate